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The Laplace mansform is used to determine the temperature field of
a wall exposed to an asymmetric stepwise temperature cycle. A
formula is obtained for the amount of heat stored in a semi-infinite
slab, A graph is presented, together with numerical calculations
based on the theory described.

Temperature fluctuations of the outside air play
a decisive role in computing the heat storage capacity
of buildings. We are in full agreement with the view-
point stemming from discussion in the Journal of
Engineering Physics that there is no need to consider
the temperature wave in an enclosure caused by
interruptions in heating, When we are dealing with
inhabited buildings, this is undoubtedly correct,
since the inside air temperature must be held con-
stant. Certain technological processes may occur in
a medium, however, which cause its temperature
to vary in the stepwise fashion shown in Fig. 1,

A temperature regime of this kind must be main~
tained in chambers for fermenting sour milk, where
the temperature must be alternated from 18 to 42° C
every 2.5 hr, That is, the air temperature inside
the chamber is increased or decreased by 12° in
stepwise fashion, relative to a mean of 30°. This
occasions considerable storage of heat, which should
be taken into account in determining the dimensions
of the thermal installations which must ensure the
above temperature regime,

The temperatures are usually different in two
adjoining chambers: when it is 42° in one chamber,
it is 18° C in the other. Therefore the temperature
field and the dividing wall are exposed to an asym-
metric thermal effect. This field is described by the
heat conduction equation
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with the boundary conditions
f{x, 0) =0, (0, 1)=0,
A %ﬂ + afts, ©)—4 (1)) = 0. 2)

The problem may be solved by the integral Laplace
transform method, Since the transform of external
temperatures Tf(r)} shown in Fig. 1, according to (1)
and (2), has the form

Ty(s) = LIt (x)] == i:”— th —TQi, 3)

the general solution may be written in transforms as
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For the zero pole, i.e., s =0, the original temp-

erature is equal to zero. The transient process is
determined by the pole
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where u are roots of the characteristic \equa.tion
tgu = —u Bi. Since we are interested in the quasi-
steady process, the required expression for the
poles takes the form

Sn=i(2n+1)%i, n=20,1,2 .. (5)

Applying the expansion theorem to (4), with allow-
ance for (5), we find
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and N_; is described by (7), where the sign of i is
replaced by the opposite.

If the origin of the coordinate system is trans-
ferred to the surface on the left, i.e., x is replaced
by X — 6 and we put 6 — =, we obtain the solution
for a semi-infinite slab. In this case (7) takes the
form
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The heat stored by unit surface of the body is
determined by
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Fig. 1. Variation of the temp-
erature of the medium.
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Fig. 2. Dependence of € on K=y 7hcy/a 7.
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Therefore, after substituting the solution for the
semi~infinite slab and integrating, we find

Q=at,Te, (10}
where
e =\ ( 2 )2 RWyE =N =20
Sia2n--1) ) (V2@ 1)+ K K
In Eq. (11) K takes the form
K= Vnhcy/a®T (12)

Analysis of the solutions obtained shows that the
amplitude of the temperature oscillations, as cal-
culated by the exact solution (6) is rapidly attenuated
as we go into the wall. We may therefore use the
simpler solutions represented by (10), which gives
results that are close to the true values, although
high. Moreover, from (10) we may calculate the
heat stored in the floor and ceiling, although they
do not experience asymmetric temperature effects,

Example of calculation, Take a chamber (3.6 x
x 12.5 x 2 m) for fermenting sour milk, with a
reinforced concrete floor and walls and ceiling of
foam concrete. The process technology requires
that the chamber temperature alternates between
18° and 42° C every 2.5 hr. It is required to deter-
mine the total amount of heat stored by the refrig-
erating chamber,

The thermophysical parameters have the fol-

lowing values for reinforced concrete; A = 1.55 W/m *
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. °C, ¢ =850J/kg - °C, y = 2200 kg/m®. The heat
transfer coefficient o between the floor and the air

is taken to be 12 W/m? - °C; T = 9000 sec. Substi-
tuting these data in (12), we find K = 2.65. With

this value of K we find from Fig, 2 that e = 0.72.
Therefore the heat stored by the floor is @ =12 - 12 -
- 9000 - 0.72 = 930 000 J/m® = 930 kj/m”?.

The thermophysical constants for foam concrete
are: A = 0.17 W/m - °C, ¢ = 850 J/kg - °C, vy = 300
kg/mB. The heat transfer coefficient « between the
air and the walls is taken to be 24 W/m? - °C. From
these data we find K = 0.162 and € = 0.15. The amount
of heat stored by the walls will be 390 kd/m?. Taking
the heat transfer coefficient between the air and the
ceiling to be o = 12 W/m? . °C, we find K = 0.324,
e=0.26, Q = 385 kJ/m?.

Therefore the total amount of heat stored by the
refrigerating chamber is Q = 82 000 kJ.
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